Step by Step Procedure of ABC

Consider the optimization problem as follows:

\[\text{Minimize } f(x) = x_1^2 + x_2^2, \quad -5 \leq x_1, x_2 \leq 5 \]

Control Parameters of ABC Algorithm are set as;
- Colony size, CS = 6
- Limit for scout, L = (CS*D)/2 = 6

and dimension of the problem, D = 2

First, we initialize the positions of 3 food sources (CS/2) of employed bees, randomly using uniform distribution in the range (-5, 5).

\[x = \begin{bmatrix} 1.4112 & -2.5644 \\ 0.4756 & 1.4338 \\ -0.1824 & -1.0323 \end{bmatrix} \]

\[f(x) \text{ values are;} \]
- 8.5678
- 2.2820
- 1.0990

Fitness function:
\[\text{fit}_i = \begin{cases} \frac{1}{1 + f_i} & \text{if } f_i \geq 0 \\ \frac{1 + \text{abs}(f_i)}{1 + f_i} & \text{if } f_i < 0 \end{cases} \]

Initial fitness vector is:
- 0.1045
- 0.3047
- 0.4764

Maximum fitness value is 0.4764, the quality of the best food source.

Cycle=1

//Employed bees phase

- 1st employed bee

\[v_{i,j} = x_{i,j} + \Phi_f (x_{i,j} - x_{k,j}) \text{ with this formula, produce a new solution.} \]
\[k=1 \quad \text{//k is a random selected index.} \]
\[j=0 \quad \text{//j is a random selected index.} \]
\[\Phi = 0.8050 \quad // \Phi \text{ is randomly produced number in the range } [-1, 1]. \]
\[\nu_0 = \begin{pmatrix} 2.1644 \\ -2.5644 \end{pmatrix} \]

- Calculate \(f(\nu_0) \) and the fitness of \(\nu_0 \).

\[f(\nu_0) = 11.2610 \text{ and the fitness value is } 0.0816. \]

- Apply greedy selection between \(x_0 \) and \(\nu_0 \)

\[0.0816 < 0.1045, \text{ the solution } 0 \text{ couldn’t be improved, increase its trial counter.} \]

- 2nd employed bee

\[\nu_{ij} = x_{ij} + \Phi_{ij} (x_{ij} - x_{kj}) \quad \text{with this formula produce a new solution.} \]
\[k = 2 \quad //k \text{ is a random selected solution in the neighborhood of } i. \]
\[j = 1 \quad //j \text{ is a random selected dimension of the problem.} \]
\[\Phi = 0.0762 \quad // \Phi \text{ is randomly produced number in the range } [-1, 1]. \]
\[\nu_1 = \begin{pmatrix} 0.4756 \\ 1.6217 \end{pmatrix} \]

- Calculate \(f(\nu_1) \) and the fitness of \(\nu_1 \).

\[f(\nu_1) = 2.8560 \text{ and the fitness value is } 0.2593. \]

- Apply greedy selection between \(x_1 \) and \(\nu_1 \)

\[0.2593 < 0.3047, \text{ the solution } 1 \text{ couldn’t be improved, increase its trial counter.} \]

- 3rd employed bee

\[\nu_{ij} = x_{ij} + \Phi_{ij} (x_{ij} - x_{kj}) \quad \text{with this formula produce a new solution.} \]
\[k = 0 \quad //k \text{ is a random selected solution in the neighborhood of } i. \]
\[j = 0 \quad //j \text{ is a random selected dimension of the problem.} \]
\[\Phi = -0.0671 \quad // \Phi \text{ is randomly produced number in the range } [-1, 1]. \]
\[\nu_2 = \begin{pmatrix} -0.0754 \\ -1.0323 \end{pmatrix} \]

- Calculate \(f(\nu_2) \) and the fitness of \(\nu_2 \).

\[f(\nu_2) = 1.0714 \text{ and the fitness value is } 0.4828. \]

- Apply greedy selection between \(x_2 \) and \(\nu_2 \).
0.4828 > 0.4764, the solution 2 was improved, set its trial counter as 0 and replace the solution \(x_2 \) with \(\nu_2 \).

\[
x = \\
1.4112 -2.5644 \\
0.4756 1.4338 \\
-0.0754 -1.0323
\]

\(f(x) \) values are:

\[
\begin{align*}
8.5678 \\
2.2820 \\
1.0714
\end{align*}
\]

fitness vector is:

\[
\begin{align*}
0.1045 \\
0.3047 \\
0.4828
\end{align*}
\]

//Calculate the probability values \(p \) for the solutions \(x \) by means of their fitness values by using the formula:

\[
p_i = \frac{f_{i}}{\sum_{i=1}^{CS} f_{i}}
\]

\[
p = \\
0.1172 \\
0.3416 \\
0.5412
\]

//Onlooker bees phase
//Produce new solutions \(\nu_i \) for the onlookers from the solutions \(x_i \) selected depending on \(p_i \) and evaluate them.

- 1st onlooker bee
 - \(\nu_2 \) =
 \[
 \begin{align*}
 -0.0754 & \quad -2.2520
 \end{align*}
 \]
 - Calculate \(f(\nu_2) \) and the fitness of \(\nu_2 \).

 \[
 f(\nu_2) = 5.0772 \text{ and the fitness value is } 0.1645.
 \]
 - Apply greedy selection between \(x_2 \) and \(\nu_2 \)
0.1645 < 0.4828, the solution 2 couldn’t be improved, increase its trial counter.

- 2nd onlooker bee
 - \(i = 1 \)
 - \(\upsilon_1 = \begin{bmatrix} 0.1722 \\ 1.4338 \end{bmatrix} \)
 - Calculate \(f(\upsilon_1) \) and the fitness of \(\upsilon_1 \).
 - \(f(\upsilon_1) = 2.0855 \) and the fitness value is 0.3241.
 - Apply greedy selection between \(x_1 \) and \(\upsilon_1 \)
 - 0.3241 > 0.3047, the solution 1 was improved, set its trial counter as 0 and replace the solution \(x_1 \) with \(\upsilon_1 \).

- \(x = \begin{bmatrix} 1.4112 \\ -2.5644 \\ 0.1722 \\ 1.4338 \\ -0.0754 \\ -1.0323 \end{bmatrix} \)
 - \(f(x) \) values are;
 - 8.5678
 - 2.0855
 - 1.0714

 - fitness vector is:
 - 0.1045
 - 0.3241
 - 0.4828

- 3rd onlooker bee
 - \(i = 2 \)
 - \(\upsilon_2 = \begin{bmatrix} 0.0348 \\ -1.0323 \end{bmatrix} \)
 - Calculate \(f(\upsilon_2) \) and the fitness of \(\upsilon_2 \).
 - \(f(\upsilon_2) = 1.0669 \) and the fitness value is 0.4838.
 - Apply greedy selection between \(x_2 \) and \(\upsilon_2 \)
0.4838 > 0.4828, the solution 2 was improved, set its trial counter as 0 and replace the solution x_2 with v_2.

\[
x =
\begin{bmatrix}
1.4112 & -2.5644 \\
0.1722 & 1.4338 \\
0.0348 & -1.0323
\end{bmatrix}
\]

\[f(x)\text{ values are;}
\begin{align*}
&8.5678 \\
&2.0855 \\
&1.0669
\end{align*}
\]

fitness vector is:
\begin{align*}
&0.1045 \\
&0.3241 \\
&0.4838
\end{align*}

//Memorize best
Best =
\begin{align*}
&0.0348 \\
&-1.0323
\end{align*}

//Scout bee phase
TrialCounter =
\begin{align*}
&1 \\
&0 \\
&0
\end{align*}

//There is no abandoned solution since L = 6
//If there is an abandoned solution (the solution of which the trial counter value is higher than L = 6); generate a new solution randomly to replace with the abandoned one.
Cycle = Cycle + 1

The procedure is continued until the termination criterion is attained.