Detailed Pseudocode of the ABC Algorithm

1: Initialize the population of solutions $\mathrm{X}_{\mathrm{i}, \mathrm{j}}$

2: Evaluate the population

3: cycle=1

4: repeat

5: Produce new solutions (food source positions) $v_{i, j}$ in the neighbourhood of $\mathrm{x}_{\mathrm{i}, \mathrm{j}}$ for the employed bees using the formula $v_{i, j}=x_{i, j}+\Phi_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}, \mathrm{j}}-\mathrm{x}_{\mathrm{k}, \mathrm{j}}\right)(\mathrm{k}$ is a solution in the neighbourhood of i, Φ is a random number in the range $[-1,1]$) and evaluate them

6: Apply the greedy selection process between x_{i} and v_{i}

7: Calculate the probability values P_{i} for the solutions x_{i} by means of their fitness values using the equation (1)

$$
\begin{equation*}
P_{i}=\frac{f i t_{i}}{\sum_{i=1}^{S N} f i t_{i}} \tag{1}
\end{equation*}
$$

In order to calculate the fitness values of solutions we employed the following equation (eq. 2):

$$
\text { fit }_{i}=\left\{\begin{array}{ll}
\frac{1}{1+f_{i}} & \text { if } f_{i} \geq 0 \tag{2}\\
1+\operatorname{abs}\left(f_{i}\right) & \text { if } f_{i}<0
\end{array}\right\}
$$

Normalize P_{i} values into [0,1]

8: Produce the new solutions (new positions) v_{i} for the onlookers from the solutions x_{i}, selected depending on P_{i}, and evaluate them

9: Apply the greedy selection process for the onlookers between x_{i} and v_{i}

10: Determine the abandoned solution (source), if exists, and replace it with a new randomly produced solution x_{i} for the scout using the equation (3)
$\mathrm{x}_{\mathrm{ij}}=\min _{\mathrm{j}}+\operatorname{rand}(0,1) *\left(\max _{\mathrm{j}}-\min _{\mathrm{j}}\right)$

11: Memorize the best food source position (solution) achieved so far

12: cycle $=$ cycle +1

13: until cycle $=$ Maximum Cycle Number (MCN)

